import pandas as pd import numpy as np import cv2 def Joint(): matrix12 = np.matrix([[ 0.999994, -2.30179e-005, -0.00338715, 22.9331], [2.30258e-005, 1.0, 2.28675e-006, 47.9336], [ 0.00338715, -2.36473e-006, 0.999994, -30.3661], [ 0.0, 0.0, 0.0, 1.0]]) matrix13 = np.matrix([[ 0.999988, -1.16345e-005, -0.00490587, 48.7739], [1.17334e-005, 1.0, 2.01129e-005, 91.5852], [ 0.00490587, -2.01702e-005, 0.999988, -71.2706], [ 0.0, 0.0, 0.0, 1.0]]) matrix14 = np.matrix([[ 0.999985, -2.39867e-005, -0.00554939, 74.1329], [2.41246e-005, 1.0, 2.47831e-005, 142.206], [ 0.00554939, -2.49166e-005, 0.999985, -113.294], [ 0.0, 0.0, 0.0, 1.0]]) matrix15 = np.matrix([[ 0.999981, -4.08954e-005, -0.00621533, 98.6007], [4.11151e-005, 1.0, 3.52216e-005, 192.034], [ 0.00621533, -3.54764e-005, 0.999981, -163.256], [ 0.0, 0.0, 0.0, 1.0]]) matrix16 = np.matrix([[ 0.999975, -6.00843e-005, -0.00709497, 129.069], [6.03902e-005, 1.0, 4.28944e-005, 236.579], [ 0.00709497, -4.33218e-005, 0.999975, -226.242], [ 0.0, 0.0, 0.0, 1.0]]) matrix17 = np.matrix([[ 0.999971, -7.82354e-005, -0.00755777, 154.855], [7.86353e-005, 1.0, 5.26223e-005, 282.774], [ 0.00755777, -5.32151e-005, 0.999971, -279.706], [ 0.0, 0.0, 0.0, 1.0]]) matrix18 = np.matrix([[ 0.999965, -0.000100226, -0.00832648, 184.996], [ 0.000100805, 1.0, 6.90642e-005, 323.342], [ 0.00832648, -6.99012e-005, 0.999965, -354.304], [ 0.0, 0.0, 0.0, 1.0]]) matrix22 = np.matrix([[ 0.872123, 0.000773, 0.489285, 4942.74], [-0.000745115, 1.0, -0.000251729, -2.8314], [ -0.489285, -0.000145035, 0.872124, -598.535], [ 0.0, 0.0, 0.0, 1.0]]) matrix32 = np.matrix([[ -0.869019, -0.00114372, -0.494777, 64430.3], [-0.000670692, -0.999994, 0.00348957, 186874.4], [ -0.494778, 0.00336434, 0.869013, -325.194], [ 0.0, 0.0, 0.0, 1.0]]) data12 = pd.read_csv("RawData\\12.csv"); print("data12 load completed!") data13 = pd.read_csv("RawData\\13.csv"); print("data13 load completed!") data14 = pd.read_csv("RawData\\14.csv"); print("data14 load completed!") data15 = pd.read_csv("RawData\\15.csv"); print("data15 load completed!") data16 = pd.read_csv("RawData\\16.csv"); print("data16 load completed!") data17 = pd.read_csv("RawData\\17.csv"); print("data17 load completed!") data18 = pd.read_csv("RawData\\18.csv"); print("data18 load completed!") data22 = pd.read_csv("RawData\\22.csv"); print("data22 load completed!") data32 = pd.read_csv("RawData\\32.csv"); print("data32 load completed!") dataArray12 = np.c_[np.array(data12),np.ones(np.array(data12).shape[0])] dataArray13 = np.c_[np.array(data13),np.ones(np.array(data13).shape[0])] dataArray14 = np.c_[np.array(data14),np.ones(np.array(data14).shape[0])] dataArray15 = np.c_[np.array(data15),np.ones(np.array(data15).shape[0])] dataArray16 = np.c_[np.array(data16),np.ones(np.array(data16).shape[0])] dataArray17 = np.c_[np.array(data17),np.ones(np.array(data17).shape[0])] dataArray18 = np.c_[np.array(data18),np.ones(np.array(data18).shape[0])] dataArray22 = np.c_[np.array(data22),np.ones(np.array(data22).shape[0])] dataArray32 = np.c_[np.array(data32),np.ones(np.array(data32).shape[0])] dataTrans12 = matrix12.dot(dataArray12.transpose()) dataTrans13 = matrix13.dot(dataArray13.transpose()) dataTrans14 = matrix14.dot(dataArray14.transpose()) dataTrans15 = matrix15.dot(dataArray15.transpose()) dataTrans16 = matrix16.dot(dataArray16.transpose()) dataTrans17 = matrix17.dot(dataArray17.transpose()) dataTrans18 = matrix18.dot(dataArray18.transpose()) dataTrans22 = matrix22.dot(dataArray22.transpose()) dataTrans32 = matrix32.dot(dataArray32.transpose()) dataTrans = np.r_[dataTrans12.transpose(), dataTrans13.transpose(), dataTrans14.transpose(), dataTrans15.transpose(), dataTrans16.transpose(), dataTrans17.transpose(), dataTrans18.transpose(), dataTrans22.transpose(), dataTrans32.transpose()] return dataTrans